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1. The OptIPuter and OptIPortals

The OptIPuter research project, so named for its use of OPT ical

networking, Internet Protocol, and compUTER technologies, was

funded by the USA National Science Foundation (NSF) in 2002

for a period of six years [17,4]. The goal was to understand

how to system engineer an ‘‘optical overlay’’ to the standard

shared Internet, so that individual researchers could tightly

couple computational resources over dedicated jitter-free 10

Gbps optical lightpaths, or ‘‘lambdas’’. Such ‘‘data superhighways’’

are needed because the shared Internet and World Wide Web

are engineered to interactively handle megabyte-sized objects,

whereas today’s scientific instruments generate gigabyte- to

terabyte-sized datasets. The OptIPuter project aims to make

interactive access of remote gigabyte visualization data objects as

easy as the Web makes access to remote lower-resolution images

today.

This requires scaling up the termination device from a single

PC, appropriate for the shared Internet, to a parallel cluster of PCs

with tiled LCD displays (termed an OptIPortal), which provides

much greater pixel display real estate, storage, compute power,

and bandwidth I/O, while maintaining personal interactivity [20,

21].

By interconnecting scalable PC-cluster OptIPortals with lamb-

das, one creates ‘‘metacomputers’’ on the scale of a nation or even

the planet Earth. The OptIPuter team has been led by the Cali-

fornia Institute for Telecommunications and Information Technol-

ogy (Calit2, a partnership of University of California, San Diego

[UCSD] and University of California, Irvine) and the University of

Illinois at Chicago’s Electronic Visualization Laboratory, along with

researchers from over a dozen campuses and multiple industrial
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partners. This research team has been extended to Amsterdam and

other sites around theworld. The details of the project and the sev-

eral hundred publications can be found at www.optiputer.net.

The OptIPuter research team and its extended family of collab-

orators have developed new grid-computing paradigms – that is,

new data and visualization techniques,middleware, transport pro-

tocols and optical signaling, control andmanagement software – to

enable applications to dynamically manage lambda resources just

as they do any grid resource, creating a ‘‘LambdaGrid’’ of intercon-

nected high-performance computer clusters, data storage devices,

and instrumentation.

As the OptIPuter project transitions away at the end of this

year, we are seeing the growth of international user communities

who want to acquire and/or contribute to these high-performance

computing and communications technologies that the core

research team has developed. There are dozens of OptIPortals

around the world, becoming interconnected by global optical

networks, thereby creating a nascent OptIPlanet Collaboratory.

This special issue of FGCS summarizes some of the OptIPuter’s

developments to date, and looks to the future, as an OptIPlanet

Collaboratory of virtual organizations in a variety of scientific and

technologydomains adopt, enhance and contribute to this evolving

cyberinfrastructure to help solve complex global problems.

2. The OptIPuter: The network as backplane

The rapid build-out of fiber on land and under sea in the

late 1990s, combined with the use of Dense Wavelength Division

Multiplexing (DWDM) to allow multiple 10 Gbps lambdas to co-

exist on the same fiber, set the stage for theOptIPuter to be possible

[12,20,21]. In particular, the National LambdaRail (NLR) [6] was

formed in the USA as the wide-area interconnection to the many

state and regional optical networks. NLR offers academics up to

forty 10 Gbps lambdas, one of which is CAVEwave, which connects

San Diego, Los Angeles, Seattle, Chicago, and Washington, DC, and

has been extensively used by the OptIPuter project. The Internet2

is now beginning to offer similar services over its Dynamic Circuit

Network.
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The USA dedicated optical networks are connected to innova-

tion centers worldwide by the Global Lambda Integrated Facility

(GLIF), shown in Fig. 1, which is a virtual organization, or facility,

of network providers, network engineers, computer scientists and

computational scientists [10,3]. These links provide researchers

with guaranteed bandwidth for data movement, guaranteed

latency for visualization/collaboration and data analysis, and guar-

anteed scheduling for remote instrument control, enabling inter-

national multidisciplinary teams to work together in an entirely

new fashion. The network of interconnected optical wavelengths

was first demonstrated at iGrid 2002 [5], and then more exten-

sively featured at iGrid 2005 [19], where over 25 applications,

many in development within OptIPuter, proved the viability of the

GLIF concept.

With wide-area networks available, the current work is at

the campus level, providing the ‘‘last-mile’’ connections between

the regional or state optical networks, which end at a campus

gateway, and the various researcher laboratories on the campus. As

a complement to the OptIPuter project, UCSD receivedNSF funding

for the Quartzite project, to investigate and compare campus-scale

lambda network architectures that span from optical-circuits-

only to packet-switched-only networks and a range of hybrid

combinations in between. Quartzite connects over 500 individual

cluster nodes on the UCSD campus with a novel switching

core. OptIPuter and Quartzite preview what campuses need to

evolve to: immense bandwidth, optical circuits on demand, and

reconfigurable endpoint systems. Of critical importance is the

evolution of large and network-capable storage clusters that can

be accessed with clear paths from research labs scattered around

campus [12,18].

With end-to-end optical paths, the OptIPuter project needed

to develop an optical control plane — an infrastructure and dis-

tributed intelligence to control the establishment andmaintenance

of connections in a network (including protocols and mechanisms

to disseminate that information), as well as algorithms for engi-

neering an optimal path among endpoints. Whereas traditional

control plane protocols and architectures aremotivated by service-

provider requirements rather than end-user requirements, future

applications will make on-demand requests for end-to-end optical

connections that regard endpoints as workstations, PCs, clusters,

sensors, and instruments, as well as help them with their globally

distributed collaborative efforts.

This awareness of the network as a prime resource has led

to a sharper focus on interactions and interconnections among

the optical control plane, Grid middleware, and the applications.

Optical network resources are as essential and dynamic as CPU and

storage resources in a Grid infrastructure, so the role of the optical

control plane is essential for next-generation optical networks

[7]. The OptIPuter’s optical network backplane promises vastly

increased transport capacity with predictable latency, determined

largely by the speed of light, and development of new methods of

provisioning that offer control of lightpaths, their characteristics,

and traffic behavior to the application level [3].

Several papers in this special issue address these capabili-

ties. OptIPuter partners at University of Amsterdam describe their

work in: ‘‘Dynamic Photonic Lightpaths in the StarPlane Network’’

(Grosso, et al. [28]); ‘‘Path Finding Using the Multi-Layer Network

Description Language’’ (Dijkstra, et al. [27]); and, ‘‘Multi-Domain

Lightpath Authorization using Tokens’’ (Gommans, et al. [24]).

NorthwesternUniversity, also anOptIPuter partner, discusses: ‘‘HD

Collaboration, Control Plane/Optical Backplane, Optical Multicast-

ing’’ (Mambretti [30]).

3. OptIPuter middleware

With these private optical paths being set up on-demand, they

combine with end resources to form a Distributed Virtual Com-

puter (DVC) [22]. TheOptIPuter DVCmiddleware integrates a wide

range of unique OptIPuter component technologies (high-speed

transport protocols, dynamic optical-network configurations, real-

time [9], and visualization packages) with externally developed

technologies (Globus grid resource management services and se-

curity infrastructure) that are increasingly being adopted in the

grid community. Our DVC middleware provides a simple, clean

abstraction for applications and higher-level middleware, allow-

ing them to easily use LambdaGrids by hiding the complexity of

underlying geographically dispersed resources across sites. These

sites may span multiple administrative domains, and enforce di-

verse resource management, naming, and security policies. How-

ever, to an application, the DVC abstraction makes this appear as

a simple computing environment where the assembled resources

are tightly connected via a reliable, private network and con-

trolled under a single administrative domain. The DVC environ-

ment is described in the article ‘‘Integrated Resource Management

for Lambda-Grids: the Distributed Virtual Computer’’ (Chien and

Taesombut [23]).

4. OptIPortals: Terminating the lambdas

The OptIPuter project correctly saw PC clusters as the

appropriate termination devices for the dedicated 10 Gbps ‘‘data

fire hoses’’, which deliver as much as 1000 times the amount

of data per second into a researcher’s lab as researchers are

now getting over the shared Internet. As a termination device,

these OptIPortals need to scale in compute power, storage, and

visualization real estate. The OptIPuter project developed and

standardized on using tiled display walls driven by PCs with

powerful commodity graphics cards. Linux clusters are managed

by the SDSC Rocks software, but there are also OptIPortals which

run Microsoft Windows or Apple OS. The article ‘‘The OptIPortal,

a Scalable Visualization, Storage, and Computing Interface Device

for the OptIPuter’’ (DeFanti, et al. [32]), describes the hardware and

supporting software.
The Scalable Adaptive Graphics Environment (SAGE) visualiza-

tion middleware was developed by OptIPuter partner Electronic

Visualization Laboratory at the University of Illinois at Chicago.

SAGE is essentially an ‘‘operating system’’ for tiled-display envi-

ronments, letting users launch distributed visualization applica-

tions on remote computer clusters and stream the visualizations

directly to tiled display walls of variable size, where they can be

viewed andmanipulated. SAGE can support collaborative scientific

visualizations at extremely high display resolution [14].
Over the past year, a widely adopted OptIPortal framework de-

veloped at Calit2 by Kai-Uwe Doerr is the Cross-Platform Clus-

ter Graphics Library (CGLX), which provides high-performance

hardware-accelerated visualization on ultra-high-resolution dis-

play systems. CGLX was developed to enable scientists to write

real-time graphics applications for visualization clusters, with the

CGLX framework taking care of networking, event handling, and

access to hardware-accelerated rendering, allowing users to focus

onwriting their applications as if they were writing them for a sin-

gle desktop. CGLX is deployed on theworld’s largest OptIPortal, de-

signed by UCSD’s Falko Kuester, and hosted at Calit2 [13].
With the ability to integrate high-definition video streams

into OptIPortals, global collaboration on analyzing complex visual

representations ofmassive data sets is becoming a practical reality.

For instance, SAGE Visualcasting supports global collaboration

among OptIPuter partners by distributing the same ultra-high-

resolution content to multiple endpoints over optical networks

in real time, as well as enabling multi-point high-definition

videoconferencing to multiple endpoints. This is described in the

article ‘‘Enabling High Resolution Collaborative Visualization in

Display Rich Virtual Organizations’’ (Renambot, et al. [26]).
However, OptIPortals are not limited to two-dimensional

displays. A virtual-reality instantiation of anOptIPortal is described

in the article ‘‘The StarCAVE, A Third-Generation CAVE and Virtual

Reality OptIPortal’’ (DeFanti, et al. [29]).
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Fig. 1. GLIF Map 2008. Visualization was created by Robert Patterson of the Advanced Visualization Laboratory at the National Center for Supercomputing Applications at

the University of Illinois at Urbana-Champaign, using an Earth image provided by NASA. Data was compiled by Maxine D. Brown of the Electronic Visualization Laboratory

at the University of Illinois at Chicago.

Fig. 2. SARA’s ESSENCE, project, part of the DEISA Extreme Computing Initiative, computes a statistical estimate of internal climate variability to obtain a signal-to-noise

ratio to better distinguish internal variability from the forced signal due to the increase of greenhouse gases. In large parts of the world, the observed warming over the last

60 years is statistically indistinguishable from the warming forced by increased greenhouse gas concentrations. This methodology is proving effective in both verifying the

existence of known phenomena, such as El Niño, and finding possible new phenomena, such as superstorms and new modes of oceanic and atmospheric variability. SARA

designed and implemented a web-based system so scientists could select a subset of the data, select a representation form, optionally perform statistical operations on the

data, and then stream over lightpaths to a scientist’s local OptIPortal.

5. Data, visualization and collaboration

As originally proposed, the OptIPuter had two major scientific

drivers, the NSF-funded Earthscope (facilitated by UCSD Scripps

Institution of Oceanography [SIO]), and the National Institutes of

Health (NIH)-funded Biomedical Informatics Research Network

(BIRN) (facilitated by UCSD National Center for Microscopy and

Imaging Research [NCMIR]). We chose these two drivers primarily

because it was virtually impossible for these science domains [8,

16] to do interactive analysis of remotemulti-gigabyte data objects

(e.g., a volumetric 3D brain image or a very-high-resolution 2D

terrain dataset) over the regular Internet. Dedicated lightpaths,

as well as more advanced data, visualization and collaboration

software and hardware, were important outcomes to OptIPuter’s

success.

Therefore, during the OptIPuter research project, a great deal

of emphasis was placed on efficient movement of large amounts

of scientific data over uncongested lightpaths. It was shown that

end users could routinely access 90% of the 10 Gbps bandwidth

of a lambda on national or global scales [2]. This sets the stage

for storage clouds discussed in the article ‘‘Compute and Storage

Clouds Using Wide Area High Performance Networks’’ (Grossman,

et al. [25]),which examines the limitations of traditional databases,

particularly as they grow larger than a few hundred terabytes. It

examines the value of data clouds, storage clouds and compute

clouds optimized for high-performance, wide-area networks, and

designed to support the ingestion, datamanagement, analysis, and

distribution of large terabyte-size datasets.
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6. Enabling e-science

Computational scientists want to study and better understand

complex systems – physical, geological, biological, environmental,

and atmospheric – from the micro to the macro scale, in both

time and space. This complexity means that no single researcher

has the necessary expertise in all the disciplines required to

analyze the data and solve the problem. Today’s problem solving

requires multi-disciplinary teams who, in turn, require new levels

of persistent collaboration over continental and transoceanic

distances, coupled with the ability to process, disseminate, and

share information on unprecedented scales [1].

For example, ecologists want to better study entire ecosystems

in estuaries, coral reefs, lakes and along coastlines. Biologists

want to perform multi-scale, correlated microscopy experiments,

zooming from an entire system, such as a rat cerebellum, to

an individual spiny dendrite. Geoscientists want to explore the

structure and evolution of the North American continent and

understand processes controlling earthquakes and volcanoes.

Atmospheric scientists want to model, analyze and predict severe

weather patterns before they become natural disasters. Scientists

and cinematographers want to explore the production, use

and exchange of very-high-quality digital media over photonic

networks. And, crisis management strategists want an integrated

joint decision support system across local, state, and federal

agencies, combining massive amounts of high-resolution imagery,

highly visual collaboration facilities, and real-time input from field

sensors. [11].

These researchers require considerable help to set up Lambda-

Grids supporting their multi-institutional science projects. To help

with this, some supercomputer centers, such as The Netherlands’

SARAComputing andNetworking Services Center, nowprovides an

‘‘e-science support center’’, to assist its users adapt and apply ad-

vanced technologies to unique application challenges, as shown in

Fig. 2. SARA is actively involved in several e-science efforts, notably

bio-informatics, climate modeling and molecular biology, and the

OptIPuter paradigm has provided them with new solutions and

new ways to deal with data. Other e-science support centers are

emerging around the world.

Over the life of this award, several new user communities,

in addition to our original biomedical and geophysical imaging

application drivers, are either using or in the process of evaluating

OptIPuter technologies for their e-science applications.

One of the most advanced international user communities to

adopt OptIPuter technologies is CAMERA, the Community Cyber-

infrastructure for Advanced Marine Microbial Ecology Research

and Analysis [15], a project funded by the Gordon and Betty

Moore Foundation and under the leadership of Calit2/UCSD and

the J. Craig Venter Institute; its development is chronicled in the

paper, ‘‘Building an OptIPlanet Collaboratory to Support Microbial

Metagenomics’’ (Smarr, et al. [31]).

NASA Goddard Space Flight Center became an early OptIPuter

affiliate partner in order to better understand what new tools

and techniques were required to optimize the use of advanced

networks for severe storm forecasts. They are now working with

the Electronic Visualization Laboratory at University of Illinois at

Chicago to tailor OptIPuter technologies to facilitate the speedwith

which they compute global forecast models, as described in the

paper ‘‘Accelerating Tropical Cyclone Analysis Using LambdaRAM,

a Distributed Data Cache Over Wide-Area Ultra-Fast Networks’’

(Vishwanath, et al. [33]).

As high-definition (HD) video becomes ubiquitous, media-

intensive entertainment, education and scientific applications are

moving toward ‘‘4K’’ imaging, which is four times the resolution

of HD. CineGrid [21], a non-profit, interdisciplinary community

of scientists and artists, works closely with OptIPuter researchers

on the research, development, and demonstration of networked

collaborative tools for the production, use and exchange of very-

high-quality digital media over optical networks. The group has

accomplished many ‘‘firsts’’, and describes the first transpacific

and transatlantic real-time transmission of uncompressed 4K

animations in the paper ‘‘Real Time Switching and Streaming

Transmission of Uncompressed 4K Motion Pictures’’ (Shirai,

et al. [34]).

7. Conclusions

Lambdas are a simple means of achieving guaranteed quality

of service; i.e., end-to-end deterministic, scheduled connectivity.

However, dedicated lambdas allow OptIPuter researchers to

experimentally dedicate entire end-to-end lightpaths and devote

OptIPuter middleware research to enabling applications, rather

than perfecting congestion control. In the same way, 20 years

ago, software shifted from optimizing mainframe timesharing

to human factors on workstations and PCs. Thus, the OptIPuter

project is not optimizing toward scaling to millions of sites, a

requirement for commercial profit, but empowering networking

at a much higher level of data volume, accuracy, and timeliness for

several advanced OptIPlanet Collaboratory virtual organizations

working to solve complex problems of global proportion.
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