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Abstract—Inflammatory Bowel Disease (IBD) is an autoim-
mune condition that is observed to be associated with major
alterations in the gut microbiome taxonomic composition.
Here we classify major changes in microbiome protein family
abundances between healthy subjects and IBD patients. We use
machine learning to analyze results obtained previously from
computing relative abundance of ∼10,000 KEGG orthologous
protein families in the gut microbiome of a set of healthy
individuals and IBD patients. We develop a machine learning
pipeline, involving the Kolomogorv-Smirnov test, to identify
the 100 most statistically significant entries in the KEGG
database. Then we use these 100 as a training set for a
Random Forest classifier to determine ∼5% the KEGGs which
are best at separating disease and healthy states. Lastly, we
developed a Natural Language Processing classifier of the
KEGG description files to predict KEGG relative over- or
under- abundance. As we expand our analysis from 10,000
KEGG protein families to one million proteins identified in the
gut microbiome, scalable methods for quickly identifying such
anomalies between health and disease states will be increasingly
valuable for biological interpretation of sequence data.
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I. INTRODUCTION

The exponential decline in the cost of next-generation
sequencing technology and innovations in bioinformatics
approaches have enabled discovery of the detailed microbial
ecology of the human body that were heretofore largely
unexplored. In whole genome sequencing metagenomics, the
genomic DNA present in a sample is first randomly sheared
and then sequenced. The output of the Illumina sequencer
are “reads” which have ∼100 contiguous DNA bases per
read. Here we use samples that have been deeply sequenced
(e.g., 100-200 million reads per sample).

There are 80 autoimmune diseases recognized by the Na-
tional Institute of Health [1], one of which is Inflammatory
Bowel Disease (IBD), which is closely tied to dysbiosis of
the gut microbiome [2]. Here we examine deep metagenomic
sequencing of a set of healthy subjects and IBD patients to

determine how microbial function changes in the health and
disease state.

Despite the extensive research on the compositional
changes of microbiota in IBD, the precise manner in which
changes in the microbial community contributes to the
disease state is only beginning to be unraveled. The mi-
crobiome DNA contains about 100 times as many genes as
its human host DNA, carrying out important functions for
the host, such as modulating immune development, amino
acid biosynthesis, and energy harvest from food [3].

In previous work [4], [5], the bacterial species compo-
sitions were shown to be highly variable across healthy
subjects, but the relative abundance of different metabolic
pathways were extremely consistent between individuals
and over time (see Figure 3 in [5] and Figure 2 in [4]).
However, one study [5] included otherwise healthy obese
individuals, and the other [4] included a cohort of individuals
rigorously defined as healthy at every body site. Testing
whether this pattern of constancy of metagenome-encoded
functional gene frequency holds true for more acutely dis-
eased populations is therefore of considerable interest.

This type of biological information is contained in the
Kyoto Encyclopedia of Genes and Genomes (KEGG), which
is used to elucidate microbial function. KEGG is a collection
of databases that contain information about genomes, biolog-
ical pathways, drugs, chemicals, diseases, and protein family
functions [6], [7]. In the KEGG database, each entry has a
specific K number and describes an orthologous protein fam-
ily with a particular biological function. Each KEGG also
has a text entry such as the one shown in Figure 1 (accessible
through the BioServices Python package [8]). Understanding
the functional profiles of IBD microbiomes, including their
differences in health and disease states, instead of just the
taxonomic structure of microbial communities, will help
inform drug development and other treatment options for
patients.

Several studies have explored the function of the IBD
microbiome using the KEGG database. For instance, Morgan



Figure 1: An example of a KEGG description file as queried
from the KEGG database for K00867.

et al. [9] created a broad map with 16S sequences of the
gut microbiota of a large cohort of patients with IBD, and
then chose a representative 11 samples to perform metage-
nomic sequencing and analyze with the KEGG database.
This analysis revealed that moderate perturbation of micro-
biome composition corresponds with major perturbation of
metabolic and functional pathways. Greenblum et al. [10]
developed a metabolic network of KEGG enzymes to study
the enzymatic variation in the gut microbiome of patients
with IBD. Tong et al. [11] identified functional microbial
communities using 16S rRNA sequencing, enhancing the
analysis with reference sequences from Greengenes and then
annotating the predicted genes with the KEGG database.
Erickson et al. [12] found a number of KEGGs and KEGG
pathways that were altered in Ileal Crohn’s Disease.

In our previous work [13], we used deep metagenomic
sequencing data, instead of predicting genes from 16S
sequencing data, to compute relative abundances of the
entire ∼10,000 entry KEGG database. Here we extend these
results, using machine-learning techniques to discover the
most significant over- and under- abundant KEGGs in the
disease state compared to healthy subjects.

In section II (Previous Work), we discuss our data col-
lection process and previous results. In section III (Meth-
ods), we present our proposed algorithms and workflows.
We have two specific workflows. The first workflow is
to identify KEGGs that are over or under abundant in
disease states based on relative abundance data obtained
from stool samples from healthy and disease cohorts. In the
second workflow we train an NLP classifier using the KEGG
description files to predict over and under abundant set of
KEGGs that we identified from our first workflow. In section
IV (Results) we show the results and evaluate our proposed
workflows and we conduced in section (V).

II. PREVIOUS WORK

A. Cohort selection and data extraction

The three main subtypes of IBD are Ileal Crohn’s Dis-
ease (ICD), Colonic Crohns Disease (CCD), and Ulcerative
Colitis (UC) [14]. In our earlier research we developed
a study with examples of each subtype of IBD, as well
as a set of healthy subjects. The description of the set
of individuals is contained in our earlier paper [13]. In
summary, we downloaded 2.4 TBs of raw reads from 34
healthy individuals, 6 samples from UC and 15 from ICD
selected from the NIH National Center for Biotechnology
Information (NCBI) BioProjects 46321, 46881 and 43021.
An additional seven samples were deeply sequenced (200
million reads per sample) by the J. Craig Venter Institute
from an adult with early CCD. Table I summarizes our
dataset and cohort nomenclature.

Table I: Cohort sample distribution
Sample distribution for the various cohorts in our dataset.

Cohort Abbreviation Number of Samples
Healthy subjects HE 34
Ulcerative colitis UC 6
Ileal Crohn’s disease CD 15
Colonic Crohn’s disease LS 7

Total samples: 62

B. Feature annotation

To clarify how our previous study computed the KEGG
relative abundances across our patient set, we describe the
technical process we followed. First, we created a reference
database of known (as of Sept 2012) gut microbe genomes
consisting of 2,471 complete and 5,543 draft Bacterial
and Archaeal genomes, 2,399 complete virus genomes,
26 complete Fungal genomes, and 309 HMP Eukaryote
Reference Genomes, for a grand total of 10,012 genomes
representing 30GB of sequences. We then used the San
Diego Supercomputer Center’s Gordon supercomputer to
align our 6.4 billion reads from the healthy and IBD samples
against the reference database we created. The database was
used to calculate the relative taxonomic distribution in each
sample.

In addition, high quality filtered reads were also assem-
bled into contigs (using Velvet [15]) and Open Reading
Frames (ORFs) were predicted from the contigs using
Metagene [16]. Protein families were identified using the
KEGG database [6], [7]. All the ORFs were aligned to
KEGG sequence database using BLASTP. A curated KEGG
reference database was generated by clustering all KEGG
sequences at 90% sequence identity with CD-HIT [17]. If all
sequences in a CD-HIT cluster belonged to the same protein
orthology family (KO), the longest representative sequence
was used in the reference database; otherwise all sequences
were retained.



The curated database recovered more than 99% of the
original hits and was 10 times faster [18]. Only the top
score non-overlapping alignments from the ORFs to KEGG
BLAST alignment results were used in counting the KEGG
protein abundance. KEGG abundance was calculated as the
number of times a KEGG protein is found in a sample,
normalized against the reference protein length and predicted
ORF length. The abundance of a protein family was calcu-
lated as its abundance divided by the sum of the abundance
of all protein families.

The computations described above consumed 180,000
core-hours (provided by Director Michael Norman) on the
Gordon supercomputer at the San Diego Supercomputer
Center. About half of this time was required for the KEGG
analysis.

The resulting output was a database of 10,012 KEGG
entries with relative abundance for each KEGG for each
of the 62 human gut microbiome samples in Table I. This
database was completed in August 2014 and is available
upon request.

III. METHODS

The dataset we examine represents a matrix of 10, 012×62
or 620,744 entries. This is the matrix on which we use
machine learning techniques to ascertain if there are biomed-
ically relevant patterns in this dataset. In the near future
not only will the number of samples increase by an order
of magnitude, but we will be able to compute directly the
relative abundance of ∼1 million genes, or two orders of
magnitude over our current KEGG dataset. Thus, within a
year, we expect our matrix to grow by three orders of mag-
nitude in scale. This paper is our pilot to develop machine
learning algorithms which will scale with the increase in
data size.

First, we use Principal Component Analysis (PCA) to
investigate our data set both across samples and across
KEGGs. That is, we apply PCA to both the 62 × 10, 012
matrix (a PCA across samples) and to the transpose matrix
(thus a 10, 012× 62 matrix, or a PCA across KEGGs). This
reveals insights into the structure of the data from both a
samples and KEGGs perspective.

Second, we develop a KEGG relative abundance classifier
that predicts over or under abundant KEGGs in the disease
state compared to the healthy. Third, having classified all
KEGGs, we then train a classifier using the queries from the
KEGG database to predict if a KEGG is over or under abun-
dant in disease state only using the text in the description file
(example description file is shown in Figure 1). Note that we
deploy this 2-step process since currently ground truth for
which KEGGs are over or under abundant in disease state
is not well understood.

Figure 2: Workflow for developing a Random Forest clas-
sifier to discriminate between over and under abundant
KEGGs in the diseased state. After splitting the data into
the training set, we select the top 100 KEGGs that have
the highest Kolomogorv-Smirnov (KS) score. We then use
these 100 most significant KEGGs to train a Random Forest
classifier and use to predict and evaluate on the remainder
of the dataset.

A. Discrimination between healthy and IBD cohort using
relative abundances

The workflow for discriminating between healthy and IBD
cohorts in our samples uses the Kolmogorov-Smirnov (KS)
test and Random Forests. We chose the KS test since it
does not use any assumptions on the distribution of the data.
We chose Random Forests since such classifiers are scale
invariant, non-linear, and robust to outliers, missing values,
and overfitting. Note that the overall design of the workflow
is our main aim, not the specific choice of classifier (Random
Forest) and statistical test (KS).

As indicated in Figure 2, we first randomly partition the
∼10,000 KEGGs into a 50% hold-out set and a 50% training
set. We develop our classifier from the training set and apply
the classifier on all KEGGs (the union of the training and
hold-out sets). The primary reason for splitting the KEGGs
into two sets is to simulate the scenario of scaling our work-
flow to new KEGGs that are introduced in the database. In
other words, we simulate, in a controlled manner, the issues
with developing machine learning models from databases
that grow larger over time. Thus, our workflow assumes that
we are training our model with a database that is smaller than
the time of the application of the model.

Since there is no single ground truth on which KEGGs



should be over and under abundant in disease state (as is
common in many biological datasets), from the training set
we use the KS test to determine the subset of the KEGGs that
are the most statistically significant between the disease and
healthy cohorts. From the KS test we select the 100 KEGGs
with the highest KS scores, and determine whether these are
over or under abundant in IBD cohorts. The over or under
abundance is determined by comparing the median of the
abundance for each of the 100 KEGGs between the healthy
and IBD cohorts. In short, we have determined the most
statistically significant over and under abundant KEGGs in
disease state.

Using these 100 most significant KEGGs, we train a
Random Forest classifier (defaults of RF, using 500 trees,
sampling with replacement, and the square root of the
number of predictors) to model if a KEGG is over or under
abundant relative to the healthy state. With this classifier
we can also compute a confidence score (probability that
a KEGG is under abundant in the disease cohorts) as
estimated by the Random Forest model to all the KEGGs
in our data. This is possible as we report the KEGGs that
have the highest (corresponding to under abundance of IBD
cohorts relative to healthy) and lowest (corresponding to
over abundance of IBD cohorts relative to health) confidence
scores. Note that we take this approach of only training the
Random Forest classifier on 100 KEGGs and applying to
the remaining KEGGs to ensure that we do not overfit.

B. Discrimination between healthy and IBD cohorts using
KEGG description files

Once we have classified all KEGGs as either over or under
abundant, we can now develop a classifier that determines
if a KEGG is over or under abundant in a subject based on
the KEGG description file (example of a description file
for one KEGG is shown in Figure 1). Since the KEGG
description file is a text file and numerous approaches and
methods are available for Natural Language Processing, we
here present a baseline model to serve as a benchmark for
future models. In our baseline approach, we use the “raw”
KEGG description file as queried from the database [6], [7].
In this baseline approach, we extract bag-of-words unigram
features weighted by Term Frequency-Inverse Document
Frequency scaling (TF-IDF, as implemented in [19]), thus
ignoring the word order and hierarchical structure of the
description file (more sophisticated features, such as [20],
[21], can be explored for future work). Our workflow for
this approach is shown in Figure 3.

In the bag-of-words approach to NLP, in each document
we count the number of occurrences of the terms in our
dictionary (fixed-size vocabulary), creating a count vector
that we can use as a feature vector for machine learning
tasks. The idea here is that high occurrences of specific terms
reflect the content or subject of the document. These raw
counts of terms are referred to as “term frequencies”. Since

Figure 3: Workflow for developing an NLP classifier to
discriminate between over and under abundant KEGGs in
the diseased state using the classified labels as determined by
the workflow from Figure 2. Each of the 10,012 KEGGs are
queried in the KEGG database [7], [6] and stored as KEGG
description files. We then extract Term Frequency-Inverse
Document Frequency (TF-IDF) features from the description
files as described in Equations 1 and 2. In parallel we classify
each of the 10,012 KEGGs from our patient data using
the workflow in Figure 2 and discretize the probabilities
of the classifier into over and under abundant and “neutral”
categories. These categories are then used as labels to train a
classifier on the extracted TF-IDF features from the KEGG
description file.

the raw counts of the terms may inadvertently weight so-
called “stop words” (such as “the”) that do not reflect the
subject of a document, we normalize the raw counts of each
term to diminish bias from commonly occurring words. A
common normalization is to count the number of documents
that contain each of the terms in our dictionary, and this
count is referred to as “document frequency.” The motivation
with this normalization is that if a word is common then it
should appear in most of the documents in the corpus that
we are studying and will have a high document frequency
count. We use the document frequencies to normalize the
term frequencies to obtain the TF-IDF features.

In our application, we define each of the terms (also
referred to as word or token) that occur in the KEGG
description files as t and each of the KEGG description files
as d (also referred to as a document in NLP). Our corpus
of documents is the 10,012 KEGG description files and we



compute the TF-IDF features for each KEGG as

tf-idf(t, d) = tf(t, d) ·
(
idf(t, d) + 1

)
(1)

where tf(t, d) is the number of occurrences (that is, the
frequency) of term t in the KEGG description file d and
idf(t, d) is the normalization of this count with respect to
the number of occurrences of t in all the other KEGG
description files. This normalization idf(t, d) is computed
as:

idf(t, d) = log
1 +N

1 + df(d, t)
(2)

where N is the total number of KEGG description files
(10,012), and df(d, t) is the number of KEGG description
files with the term t. Given the success of such features in
NLP applications, this set of features from the description
files for each KEGG serves as a baseline to develop classi-
fication models.

To develop the classification models from the bag-of-
words TF-IDF features, we discretize the confidence scores
of all the KEGGs in our data, as estimated by the Ran-
dom Forest classifier we developed earlier, to three dis-
tinct categories: under abundant, over abundant, and neither
(probability of Random Forest output greater than 0.75,
less than 0.25, and between 0.25 and 0.75 respectively.
These thresholds may be adjusted to allow for more False
Positives/Negatives, but we do not explore adjusting these
trade-offs here. Using these categories as the labels for the
bag-of-words features that we computed, we proceed to
train three standard classifiers (Naive Bayes, Support Vector
Machine with linear kernel, and Logistic Regression) and
report their average F1 score using 10-fold Cross Validation.

IV. RESULTS

A. Use of PCA to show KEGGs separate healthy and
disease states

It has been known since 2010 (see Figure 4 in [22]) that
in human gut microbiome samples the species abundances
can separate healthy from IBD substates UC and ICD using
PCA. Further research (see Figure 2 in [23]) showed that
PCAs based on species abundance can also separate ICD
into its two subtypes (CCD and ICD), as well as separating
UC and healthy.

Our species abundance data shows a similar separation
(Figure 4a). However, we can go beyond microbial species
and use PCA on the KEGG protein families by computing
PCA on our data matrix with microbiome samples as rows
and KEGGs as columns. This shows an even clearer sepa-
ration between healthy and the three disease states (Figure
4b). Thus, it appears that there are significant differences
between the KEGG relative abundances in health and each
of the three IBD disease states. We next turn to using
machine learning techniques to find which KEGGs are the
best discriminators.

(a) PCA of species across samples

(b) PCA of KEGGs across samples

Figure 4: PCA of species (a) and KEGGs (b) across samples
colored by the different cohorts (abbreviations and data
summary shown in Table I). As shown in (b), using all
10,012 KEGGs we see near perfect separation between the
different cohorts. While on the other hand, in (a) using
species PCA we do not see a clear separation between UC
(Ulcerative colitis) and HE (healthy) groups.

B. Classification of over and under abundant KEGGS in
IBD

The Random Forest classifier that we developed according
to our workflow in Figure 2 obtains an out-of-bag classifi-
cation accuracy of 99%. Moreover, since Random Forest
classifiers can give probabilistic outputs, we compute the
confidence scores for how well each KEGG works as a
classifier on separation of over or under abundant compared
to the healthy cohort. Figure 5 shows the PCA of the
KEGGs. We color each KEGG in the PCA scatter plot with
the discretized confidence score from the Random Forest



classifier1.

Figure 5: PCA of KEGGs classified with the outputs of our
trained Random Forest classifier based on subject relative
abundance data. The categories of over abundant, under
abundant and neutral KEGGs form coherent clusters in PCA
space suggesting that the classifier has not overfit and that
similar KEGG distributions in our patient population are
classified with a similar label.

Coloring the PCA plot with these discretized confidence
scores shows that the all KEGGs are clustered according
to their abundance level. That is, KEGGs that are clustered
with each other in PCA space have a similar classification
score as given by the Random Forest classifier. Otherwise
if the classifier was overfitting, then we would expect to
see the color distribution of the KEGGs in the scatter plot
to be distributed in a less structured and more random
manner. Note also that this separation continues into the
most extreme regions of confidence (over 98% and less than
2%). This set of ”extreme” KEGGs corresponds to ∼500
KEGGs or 5% of all KEGGs in our dataset. These results
indicate that our proposed workflow in Figure 2 is able to
discover the best KEGG classifiers for separating over or
under abundant values in IBD patients compared to healthy
subjects.

Finally, we can use the classifier to find the over- and
under-abundance KEGGs that most differentiate between the
health and disease states. In Figure 6 we show a sample of
the most confident KEGGs that are over and under abundant
compared to the healthy cohorts for both our training and
hold-out sets. This figure clearly shows the separation of the
healthy and disease samples on a logarithmic scale.

It is beyond the scope of this paper to go into the
biological implications of these large differences, but we
note that our machine learning methodology has selected

1For the raw scores see https://plot.ly/∼crude2refined/1959/pc2-vs-pc1.
embed

certain KEGGs that previous research has identified as
important to IBD state. Notably, we find that a number
of the over-abundant KEGGs identified are involved in
the phospho-transferase system (PTS) (K03480, K03483,
K03475, K02794, and others). The PTS is a sugar transport
mechanism associated with the Firmicutes phylum, which is
favored in patients with IBD [24], [10], being involved in
carbohydrate uptake. Furthermore, the PTS enzyme FrvX is
a known biomarker for IBD according to [25].

Another interesting over-abundant KEGG we identify is
mobB (K03753), the presence of which enhances activation
of nitrate reductase as discussed in Palmer et al. and Eaves
et al. [26], [27]. Nitrate reduction is a critical process that
produces nitric oxide, which is not synthesized by the human
genome. Increased levels of nitric oxide is associated with
inflammation, cancer, and IBD as several studies have shown
[10], [28], [29], [30]. Under-abundant KEGGs include those
that metabolize amino acids and carbohydrates (K01847,
K01711, K00971, K12111, and more), which are thought
to be decreased in favor of nutrient uptake in the IBD
microbiome as shown in [9]. Several KEGGs involved in
amino acid biosynthesis and carbohydrate metabolism are
also over-abundant, reflecting the inconsistency in previous
studies and the need for further analysis and more datasets.

In a future paper, we will analyze in more detail the
biological significance of our hundreds of over and under
abundant KEGGs that differentiate between health and IBD.

C. Development of a natural language classifier to disease
association

As additional KEGGs are annotated or additional disease
pathways are identified, natural language processing can
help predict the association between new protein families
and disease. Here, we present preliminary results on devel-
oping a baseline classifier that determines if a KEGG is over
or under abundant based on the KEGG description file alone
(a snippet is shown in Figure 1).

As discussed in the methods section above, we extract
unigram bag-of-words TF-IDF features and train three dif-
ferent baseline classifiers to classify a KEGG as “over
abundant,” “under abundant,” or “neither” based on the
results of the two-stage classification above. Figure 5 shows
the distribution of these three categories on the PCA of the
KEGG relative abundances amongst the cohorts in our data.
The uniformity of the distribution of these three categories
in the distribution of our KEGGs suggests that the categories
that we have selected for the KEGGs are sensible.

Table II shows the average F1 score for the three classi-
fiers we considered using 10-fold cross validation. We report
the F1 score since it is a more rigorous measurement of
accuracy as it is the harmonic mean of the precision and
recall scores (that is, we are accounting for both type I and
type II errors by not allowing class imbalance to influence
our error rates). The results that we have are significantly

https://plot.ly/~crude2refined/1959/pc2-vs-pc1.embed
https://plot.ly/~crude2refined/1959/pc2-vs-pc1.embed


Figure 6: Distribution of the relative abundance of KEGGs selected by our approach that discriminate between healthy and
disease states. The horizontal axis is the relative abundance values of the KEGGs on a logarithmic scale for each of the
samples. See Table I for the summary of cohort samples.

Table II: Classification accuracies using KEGG description
files

Average F1 scores based on 10-fold cross validation for classifiers we
trained on bag-of-words TF-IDF features from the KEGG description files

to classify KEGGs as under or over abundant relative to healthy states.
Classifier F1-score
Naive Bayes 0.71± 0.024
Support Vector Machine 0.76± 0.012
Logistic Regression 0.77± 0.007

higher than random. This suggests that our baseline TF-
IDF features are able to predict if the description of the
KEGGs has predictive power for discriminating between
healthy and disease states. The predictive power of these
features can be used in more sophisticated topic modelling
approaches (such as Non-Negative Matrix Factorization [31],
Latent Dirichlet Allocation [32], and word embeddings [20],
[21]). Such topic models can then be used to aid biologists
in comprehending the biological relationship between the
numerous KEGGs in databases. We suspect that future
work that takes into account the hierarchical structure and
utilizes domain knowledge of the KEGG description files
will significantly improve this baseline performance.

V. DISCUSSION AND RELATED WORK

Microbial communities are complex networks that rely
on function as well as structure. The KEGG is a well-

characterized database of molecular function that has been
a widely-used tool to investigate microbial function. By
looking at the function of specific disease-associated micro-
bial communities, we can better identify targets for future
intervention (i.e. small molecule development to target a
specific gene pathway). The motivation for using machine
learning methods is to reduce the amount of time-consuming
manual investigation of immense amounts of data generated
from metagenomic sequencing. Using metagenomic data
from a cohort of healthy and IBD-affected individuals, we
developed and trained a two step classifier to identify 100
KEGG ortholog genes which are over or under abundant in
IBD patients compared to healthy adults. We also demon-
strated the ability of a simple natural language classifier
to identify KEGGs as over or under abundant in the IBD
disease state.

While there are a number of methods that could be used
with KEGG protein families to discover the large changes
in healthy and disease states, we turned to machine learning
methods here because the next step in our project will see
our matrix of samples versus function grow by a factor of
1000x, necessitating a computational approach to discovery
of these patterns.
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