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ABSTRACT 
Microbial communities that live on the outside and inside of the 
human body dramatically influence human health and diseases. In 
recent years, major progress has been made in understanding the 
human microbiome communities through projects such as the 
Human Microbiome Project (http://commonfund.nih.gov/hmp/), 
using next generation sequencing technologies and metagenomic 
approaches. In this paper, we describe a comparative 
computational analysis of 183 human gut microbiome sequence 
datasets, drawn from healthy individuals as well as those with 
autoimmune diseases. About 2.4 TB of Illumina deep sequencing 
metagenomic data were analyzed using computational workflows 
we developed, which run multiple steps of data- and computing- 
intensive analyses such as mapping, sequence assembly, gene 
identification, clustering and functional annotations. The analyses 
were carried out on the Gordon supercomputer at the San Diego 
Supercomputer Center (SDSC), using ~180,000 core hours and 
tens of TB storage space. Our analysis reveals the detailed 
microbial composition, dynamics, and functional profiles of the 
samples and provides new insight into how to correlate microbial 
profiles with human health and disease states. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences –
biology and genetics, health. 

General Terms 
Algorithms, Performance, Design 

Keywords 
Human Microbiome Project, HMP, Next Generation Sequencing, 
NGS, Metagenomics, Bioinformatics, Computational Biology, 
Human Gut, XSEDE, High Performance Computing, 
Parallelization 

1. INTRODUCTION 
The microbes that live in and on the human body outnumber the 
human cells by 10-fold. The collective human microbial 
communities, known as the human microbiome, play a profound 
role in human health and disease. Although a few disease-related 
microbial species have been extensively studied using culturing 
techniques, most species of human gut microbes cannot be 
cultured and have remained unknown. With the orders-of-
magnitude reduction in sequencing cost since the Human Genome 
Program, a revolution in understanding the ecological structure of 
the microbiome using genomic techniques has become possible 
through a new approach termed metagenomics [1].  

The genomic study of the diverse microbial ecology of the 
human gut took off with a study [2] using 13,355 prokaryotic 
ribosomal RNA gene sequences from the human gut. This was 
followed by the earliest metagenomic study [3] of human gut 
microbiome, which used traditional Sanger sequencing 
technologies. This landmark study generated about 80 megabases 
(MB) of DNA sequence data. In the last few years, the transition 
to Next Generation Sequencing (NGS) technologies [4] has 
resulted in dramatic advances, promoting a large wave of new 
studies in human microbiome [5-8]. Especially, projects such as 
MetaHIT [6] and Human Microbiome Project (HMP) [7, 8], 
which utilized the Illumina sequencing platforms, generated many 
terabases of metagenomic sequences, four orders of magnitude 
larger than the earliest gut microbiome study [3]. 

The vast amount of metagenomic data produced by the NGS 
platforms provide a much deeper, wider and more comprehensive 
view of the human microbiome. However, this data-intensive 
approach raises corresponding challenges for researchers in data 
analysis. In this study, we explore the use of large memory 
supercomputers to accelerate scientific discoveries from 
comparative gut microbiome analysis across healthy and diseased 
human subjects. 

The large number of sequence reads (108) or sequence 
database file sizes (100s of GB) in microbiome projects means 
that computing and storage has become a bottleneck. Beyond the 
computing bottleneck, the complexity of analysis is another major 
challenge. NGS microbiome data analysis is a complex process, 
including many computational procedures (e.g. sequence quality 
control, filtering, mapping and assembly) to analyze and interpret 
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the data at several different levels such as phylogenetic, gene, 
function and pathway levels. This requires many different 
computational tools, each with different computing requirements 
and running patterns, to be integrated using workflows creating 
highly flexible and scalable computing platforms. 

To overcome these challenges, we developed several robust 
computational workflows specific to human microbiome 
metagenomic data deployed on SDSC’s large memory Gordon 
supercomputer. We describe the results of applying our 
computational workflows to study 183 human gut microbiome 
sequence datasets from healthy individuals and those with 
diseases. About 2.4 TB of Illumina deep sequencing 
metagenomics data were processed.  

Our computational analysis has led to a series of discoveries 
about the microbial composition, dynamics, and functional 
profiles of the samples and produced new insights into correlating 
microbial profiles and human diseases. In this paper we will 
describe the computational analysis and exhibit examples of the 
microbiome database which results, continuing with biomedical 
analysis of the large microbial database in further publications. 

2. Materials and Data 
2.1 Gut Microbiome Metagenomic Data 
Our goal was to develop a time series of an individual’s (Larry 
Smarr-“LS”) gut microbiome and to compare the dynamics 
against a broad group of healthy individuals and a selection of 
patients with inflammatory bowel disease (IBD). IBD is an 
autoimmune disease, which affects over one million Americans. 
This study was motivated by LS’s detailed biomarker time series 
study, derived from blood and stool specimens.  These biomarkers 
led to LS being diagnosed with IBD [9]. Here we seek to add the 
dynamics of LS’s gut microbiome. To do this, we analyzed the 
metagenomics of LS’s gut microbiome derived from 3 stool 
samples (LS001, LS002 and LS003) obtained at three different 
time points (4 months apart). From the stool samples provided by 
the subject (LS), the J. Craig Venter Institute extracted and 
sequenced the microbial DNA using NGS Illumina technology.  

Forming a control group were 154 samples from healthy 
(HE) individuals. We then compared these healthy gut microbial 
ecologies with those from LS and from patients with IBD, 
dividing the IBD patients into the two IBD subtypes: Crohn’s 
Disease (CD) and Ulcerative Colitis (UC). We used 15 samples 
from 5 patients with CD (3 samples per patient) and another 11 
samples in the group from patients with UC. All the CD, UC and 
HE samples had been sequenced using Illumina technology. The 
HE and IBD raw sequence reads are from the Human Microbiome 
Project [6] and were downloaded from National Center for 
Biotechnology Information (NCBI) Sequence Read Achieves 
(SRA) under BioProject IDs 46321, 46881 and 43021.  All the 
raw reads are pair-ended (PE) and about 100 base pair in length. 
The total size of these raw reads is about 2.4 TB. The list of 
samples is summarized in Table 1.  

For more detailed analyses, we removed 5 samples from the 
UC group, each of which had less than 2 million reads after 
filtering out low quality reads. We also down-selected the 154 HE 
samples to 35 samples that spanned the variation in phyla 
abundance that we observed in our preliminary analysis of the full 
samples. We then found that one HE sample has over 95% 
proteobacteria. This sample may be from an unhealthy subject or 
it might have been contaminated. We therefore removed it from 

the calculation. This yielded a high-resolution group of 58 
samples (Table 1). Table 1 also lists the number of high-quality 
reads for these selected samples after filtering out reads with low 
quality scores, reads from human and the artifically duplicated 
reads using our analysis workflows (Figure 1).  

2.2 Reference Genomes 
A comprehensive microbial reference genome database is 
essential for analyzing microbiome data. We compiled a reference 
database from several resources available as of September 17 
2012: NCBI’s complete bacteria and archaea genomes (2036 
genomes), NCBI’s complete virus genomes (1397 genomes), 
NCBI’s complete fungi genomes (39 genomes), NCBI’s draft 
bacteria and archaea genomes (1826 genomes) and HMP 
eukaryote reference genomes (309 genomes). These 5607 
genomes, which have ~15 GB of sequences, are used as reference 
for aligning the reads and then calculating the taxonomy profiles.  
The computational details are described in following sections. 

3. Implementation 
3.1 Computing Resources 
We used SDSC’s Gordon for all the computational data analysis 
because it is a dedicated data-intensive supercomputer sponsored 
by the National Science Foundation’s (NSF) XSEDE program, 
well matched to the large data requirements of all software tools 
in our workflows. Gordon has 1024 compute nodes and 64 I/O 
nodes. Each compute node contains two 8-core Intel Sandy Bridge 
processors and 64 GB of DDR3–1333 RAM. Each I/O node has 
two 6-core Intel Westmere processors, 48 GB of DDR3–1333 
RAM, and sixteen 300 GB solid state drives. Its large memory 
supernodes have over 2 TB of cache coherent memory. Gordon 
also features dual rail QDR InfiniBand network and data Oasis 
high performance parallel file system with over 4 PB capacity and 
sustained rates of 100 GB/s. The theoretical peak performance of 
Gordon is 341 TFlop/s. Gordon runs Rocks as the cluster 
management software, CentOS as the operating system, Catalina 
and TORQUE as the job scheduling and resource managing 
systems. Mapping Gordon’s capabilities against our detailed data 
and software requirements will be discussed in section 3.3. 

3.2 Workflow Integration 
The computational workflows we implemented are illustrated in 
Figure 1.  

The first step in our analysis is quality control for raw 
sequencing reads using our internal QC scripts that remove low 
quality reads based on quality scores. Human sequences are then 
removed by comparing to human genome and mRNA sequences 
with Bowtie [10, 11], BWA [12, 13] or FR-HIT [14]. Artificial 
duplicates, which are common in NGS raw reads, are also 
removed using program CD-HIT-DUP [15], a program from the 
CD-HIT package [16, 17]. The filtered reads are mapped against 
the curated microbial reference genome sequences described 
above using FR-HIT [14] and BLAT [18]. Taxonomic profiles are 
then computed based on the mapping results. 

The filtered reads are further denoised and clustered to 
remove sequence errors and redundancy [15] before sequence 
assembly using Velvet [19], Soapdenovo [20] or Abyss [21]. 
Filtered reads are mapped to contigs to calculate the abundance of 
contigs. ORFs are called from assembled contigs by 6-reading 
frame translation or by using Metagene [22, 23] or FragGeneScan 



[24]. ORFs are annotated through comparison to Pfam, Tigrfam, 
COG, KOG, GO and KEGG databases using Hmmer3 [25], RPS-
BLAST and BLASTP [26].  

3.3 Workflow implementation  
The major computational procedures in our workflow are data-
intensive, since they all deal with GB of input files and generate 
the same scale of output files for a single microbiome sample. In 
addition, the software tools for these procedures have different 
computing requirements on CPU, memory and I/O (Table 2). 

The unique configuration of Gordon resources greatly 
facilitates the development of our workflows. Two important 
efforts in our workflow implementation are to allocate jobs in 
proper compute nodes and to parallelize computationally intensive 
tasks, especially for two types of processes.  

The first type of process, including filtering human DNA, 
mapping reads to reference genomes, function and pathway 
annotation against COG, KOG, Pfam, Tigrfam and KEGG 
databases, require large reference databases. In our analysis, the 

top largest reference databases are the microbial genome database 
(15GB) used for mapping, KEGG protein sequence database 
(6GB) for pathway annotation, and human genome (3GB) for 
filtering human DNA. A normal compute node on Gordon has 64 
GB RAM. So all reference data or the indexed reference data built 
by aligning or mapping algorithms (e.g. Bowtie, BWA and 
BLAST) can be fully loaded into computer memory and be 
concurrently used by all threads across the compute cores. These 
tasks are further parallelized by dividing the input data, submitting 
them to multiple compute nodes, and merging the results (Table 
2). In this setting, the huge reference databases, which will be read 
by all the compute nodes, are placed in Gordon’s ultrafast Oasis 
file system. Due to the high I/O speed of Gordon, it is possible to 
submit a large number of jobs without causing notable delay. 

The second type of process, such as removal of duplicated 
reads by cd-hit-dup and sequence assembly using velvet or 
SOAPdenovo, do not need a reference database, but the software 
tools run algorithms on all the input sequences and store the data 
structure like graph or hash table in computer memory. Gordon’s 
large RAM setting is a good match to this requirement.  

 
Table 1. Gut Microbiome Metagenomic Datasets 

Sample 
Group Samples Average PE reads 

per sample Total PE reads Selected  
samples 

Average filtered high 
quality PE reads per 

selected sample 
LS 3 151,401,139 454,203,418 3 119,694,209 

CD  15 91,477,052 1,372,155,785 15 57,624,823 

UC  11 14,330,989 157,640,888 6 2,905,681 

HE  154 68,609,164 10,565,811,331 34 39,692,865 

Total  183 68,578,204 12,549,811,422 58 44,662,870 
  

 

 
Figure 1. Read-based and assembly-based workflows for Illumina metagenomic data 

 



In addition, most programs in our workflows like cd-hit and 
velvet have built-in multi-threading feature, so they can take 
advantage of the multiple cores in Gordon compute nodes. In our 
analysis, all procedures, except for quality control and ORF call, 
utilized all 16 cores of Gordon’s compute nodes. 

4. Results and Discussion 
4.1 Computing requirements 
The 183 samples were all analyzed using our workflows. The 
whole analyses took ~180,000 core-hours on Gordon resources 
and consumed tens of TB of storage.  

Among all the analysis steps, pathway annotation against 
KEGG database is the most time-consuming one, which accounts 
for about half of the core-hours used. This step was accelerated by 
aggressive parallelization of over 800 compute cores. The 
following time-consuming procedures are mapping, duplicates 

removal, and assembly, which take about 20%, 10% and 10% of 
the core hours respectively. 

Assembly is the most memory-consuming step, which 
requires up to 256GB memory for some data sets. Duplicates 
removal and mapping are the next memory-demanding processes, 
but they all run well within 64 GB memory. 

4.2 Taxonomy profiles 
In this paper, we will give an overview of the results from our 
taxonomy analysis. The taxonomy profiles are calculated based on 
the mapping results between the reads and the reference genomes 
using the following procedures. A mapped read is assigned to the 
top matched genome. When a read is aligned to multiple genomes 
(Number =N) with identical score, each reference receives a 
coverage of 1/N * read length. This alignment process results in 
the abundance values for all major taxonomy ranks: domain, 
phylum, order, class, family, genus, species and strains.  

 
Table 2. Features of the Computational Tools in Our Workflow 

Computing requirement Parallelization Analysis Tool 
Data CPU RAM Multi-threading Map Reduce 

Quality control QC script !     
Human DNA removal Bowtie !   !  

Duplicates removal CD-HIT-DUP !  ! !  
Mapping FR-HIT ! !  !  

Read clustering CD-HIT-EST !  ! !  
Assembly Velvet, SOAPdenovo !  ! !  
ORF call Metagene, Fraggenescan  !     

ORF clustering CD-HIT !  ! !  
COG, KOG annotation RPS-BLAST ! !  ! ! 

KEGG annotation BLAST ! !  ! ! 
Pfam, Tigrfam annotation HMMER3 ! !  ! ! 

 

 
Figure 2. Percentage of reads mapped to domains 

 
Figure 3. Relative species abundance for the samples at phylum level 



 

We calculated the read coverage for each genome, which is 
the total coverage divided by genome length. Plasmid sequences 
were excluded from coverage calculation due to variable copy 
number. The genome coverage values were normalized against all 
reference genomes to calculate the relative abundance for each 
reference genome. For the most abundant microbial species, we 
found a genome coverage as high as 391. 

We created an output spreadsheet of microbial taxonomic 
rank against all high resolution 58 samples, which leads to very 
large output spreadsheets.  For instance, at the strain taxonomic 
level, we have ~4000 rows of NCBI taxid identified strains vs. 58 
samples, producing ~230,000 filled spreadsheet cells. We then 
look for patterns within these spreadsheets. 

Figure 2 shows the percentage of reads mapped to different 
domains: viruses, bacteria, archaea and eukaryota. About 12-38% 
of reads couldn’t be mapped to any currently existing reference 
species, indicating these reads may be from novel species. With 
the fast growth of the available reference genomes in public 
databases, many of these unmapped reads will be assignable to 
known species in the near future, and thereby will allow 
refinement of our preliminary results shown here. An unusual 
result is that at the first time sample for LS (LS001), the gut 
microbiome had a large viral load and a significant portion of 
archaea, in addition to the bacteria seen in all the other samples. 

A high level summary of our results is shown in Figure 3, 
which shows the taxonomy profile at phylum level for LS and 
averages of healthy and IBD samples. For this comparison all 
viral reads have been removed, so we are only comparing 
abundance within the bacteria, archaea and eukaryota domains. 
Even at this averaged phyla level, a number of results can be seen.  

First, in our data, there is a microbial ecology signature 
differentiating the two types of IBD from each other and from 
healthy individuals. In the average of healthy subjects, 95% of the 
microbes are in two dominant phyla - the Bacteroidetes and 
Firmicutes, with the former in greater abundance than the latter.  
In the Crohn’s Disease subjects, the Bacteroidetes are reduced by 
over 95% compared to the average of healthy subjects, while the 
Firmicutes are doubled in their percentage and the Actinobacteria 
increased by over 30-fold. In the UC subjects the Proteobacteria 
(predominately E. coli) is increased over 20-fold compared to the 
average of the healthy subjects, while the fraction of both the 
Bacteroidetes and the Firmicutes is decreased. A bigger sample 
size will be needed to determine if this microbial ecology 
discriminator between the two forms of IBD holds up. 

Second, there are also differences in the time series samples 
from individual LS. Sample LS001 (December 28, 2011) was 
taken at his largest value of overall inflammation (as measured in 
the blood by Complex Reactive Protein). The second sample 
(LS002) was taken (April 3, 2012) after LS had antibiotics for one 
month and a corticosteroid for two months.  The third sample was 
obtained four months later (August 7, 2012) with no additional 
pharmaceutical intervention. 

The overall pattern of the three LS microbial abundance 
(Figure 3) is similar to CD in that the Bacteroidetes phylum is 
greatly reduced and the Actinobacteria phylum is increased. 
However, the Proteobacteria fraction (~10% in all three samples) 
is more similar to UC.  We might expect this since the CD 

samples in our study are all from patients1 with ileal CD, where 
the primary inflammation is located in the end of the small 
intestine.  In contrast, LS has colonic CD, with inflammation 
confined to 16 cm. of the sigmoid colon of the large intestine2.  In 
UC inflammation is restricted to the large intestine, so we might 
expect the LS samples to be intermediate between our UC and CD 
subjects. 

Interestingly, the first sample LS001 is significantly different 
from all the other subjects in that a) archaea methanogens 
compose 20% of the total archaea/bacterial abundance and b) 
Fusobacteria are 8% of the total. Significantly after the combined 
antibiotic/corticosteroid therapy, the Fusobacteria were reduced 
90-fold and the archaea were reduced 50-fold. These results are 
intriguing and needs to be studied further with a wider range of 
IBD patients receiving therapy.   

More detailed biomedical results will be fully discussed in a 
future publication, including a description of the microbial 
ecology for each sample and an analysis down to the species and 
strain level. 

4.3 Discussion 
To address the great computational challenges in analyzing next 
generation microbiome sequence data, we developed effective 
bioinformatics workflows using SDSC’s Gordon data-intensive 
supercomputer, an NSF XSEDE resource.  

The advanced configuration, software and hardware 
frameworks of Gordon enables fast and reliable execution of our 
workflows on terabytes of sequence data. Extremely time-
consuming jobs can be easily performed through efficient 
parallelization across hundreds of compute cores. With 
accelerated utilization of NGS technologies, the ever larger-scale 
of microbiome data or other types of genomic data in the future 
will routinely require robust bioinformatics workflows and 
advanced computing infrastructures like Gordon.   

Our project has led to the discovery of novel microbial 
ecological signatures, potentially creating new medical 
diagnostics for separating healthy from disease states and 
differentiating between subtypes of autoimmune diseases such as 
IBD. 
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